Time Limit: 2000/1000 MS (Java/Others)
Memory Limit: 131072/131072 K (Java/Others)
Problem Description
soda has a set S with n integers { 1,2,…,n}. A set is called key set if the sum of integers in the set is an even number. He wants to know how many nonempty subsets of S are key set.
Input
There are multiple test cases. The first line of input contains an integer T (1≤T≤105), indicating the number of test cases. For each test case:The first line contains an integer n (1≤n≤109), the number of integers in the set.
Output
For each test case, output the number of key sets modulo 1000000007.
Sample Input
4 1 2 3 4
Sample Output
0 1 3 7
Author
zimpha@zju
Source
题意:给出一个数n,则有一个集合set={1,2,3,4,...,n}
问这个集合set有多少个非空子集,使得子集里面所有元素的和为偶数
我们知道(a+b)^n=C(n,0)a^0*b^n...
令a=b=1,得:2^n=C(n,0)+C(n,1)+C(n,2)+...+C(n,n-1)+C(n,n)
令a=1,b=-1,得:0=C(n,0)-C(n,1)+C(n,2)-C(n,3)+...-C(n,n-1)+C(n,n)
则有:C(n,0)+C(n,2)+..+C(n,n)=C(n,1)+C(n,3)+...+C(n,n-1)=2^(n-1)
对于给出的m,
当m=2*n时,有n个偶数,n个奇数,偶数可以选择0,1,2,3个等,奇数可以选择0,2,4,6个等
写出组合式,化简得:ans=2^(m-1)-1
-1是因为要减去空集的情况
当m=2*n-1时,同样化简可得:ans=2^(m-1)-1
则:ans=2^(m-1)-1
利用快速幂即可求。
#include#include using namespace std;#define ll long longconst int mod=1e9+7;ll quick_pow(ll n){ ll ret=1; ll x=2; while(n){ if(n&1) ret=ret*x%mod; x=x*x%mod; n>>=1; } return ret;}int main(){ int test; scanf("%d",&test); while(test--){ ll n; scanf("%I64d",&n); printf("%I64d\n",quick_pow(n-1)-1); } return 0;}